

Agyat gupta (TARGET MATHEMATICS) Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph.: 410685®,2630601(O)Mobile : 9425109601; 9425110860 PREMIER INSTITUTE for X, XI & XII

- 1. All questions are compulsory.
- 2. The question paper consists of 34 questions divided into four sections A,B,C and D. Section – A comprises of 10 question of 1 mark each. Section – B comprises of 8 questions of 2 marks each. Section – C comprises of 10 questions of 3 marks each and Section – D comprises of 6 questions of 4 marks each.
- 3. Question numbers 1 to 10 in Sections A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four mark each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.

CLASS X_ 2011-2012 (SA-1)

Time	: 3 Hours 15 Minutes Maximum Marks : 80
	SECTION A
Q.1	If mode of the following data is 7, then value of k in 2, 4, 6, 7, 5, 6, 10, 6, 7, 2k +1,9,7,13 is : (A) 3 (B) 7 (C) 4 (D) 2
Q.2	If α, β are zeroes of $x^2 - 6x + k$. What is the value of k if $3\alpha + 2\beta = 20$. (A) -16 (b) 8 (c) -2 (d) -8
Q.3	How many prime factors are there in prime factorization of 5005. (A) 2 (B) 4 (C) 6 (D) 7
Q.4	Which of the following is defined ? (a) $\tan 90^{\circ}$ (b) $\cot 0^{\circ}$ (c) $\cos ec90^{\circ}$ (d) $\sec 90^{\circ}$
Q.5	Given that HCF (253, 440)=11 and LCM (253, 440)= $253 \times R$. The value of R is (a) 400 (b) 40 (c) 440 (d) 253
Q.6	If $3\cos\theta = 1$, then the value of $\cos ec\theta$ is: (a) $2\sqrt{2}$ (b) $\frac{3}{2\sqrt{2}}$ (c) $\frac{2\sqrt{3}}{3}$ (d) $\frac{4}{3\sqrt{2}}$
Q.7	If $x = 2^3 \times 3 \times 5^2$, $y = 2^2 \times 3^3$, then HCF (x,y) is
	12 (b) 108 (c) 6 (d) 36

Target Mathematics by- Agyat Gupta; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Q.8	The upper limit of the median class of the following distribution is :									
		Class	0 - 5	6 - 11	12 - 17	18 - 23	24 - 29			
		Frequency	13	10	15	8	11			
	(A) 17 (B) 17.5 (C) 18 (D) 18	3.5				1		
Q.9	If $x = 2\sin^2 \theta$, $y = 2\cos^2 \theta + 1$ then the value of $x + y$ is									
	(/	A) 2 ((B) 3	(C) $\frac{1}{2}$	(d) 1					
Q.10	The number of solutions of the pair of linear equations $x+2y-8=0$ and									
	2x + 4y = 16 have :									
	(a) 0 (b) 1 (c) Infinitely many (d) None									
	SECTION B									
Q.11	What must be added to the polynomial $p(x) = 5x^4 + 6x^3 - 13x^2 - 44x + 7$ so that the resulting polynomial is exactly divisible by the polynomial $Q(x) = x^2 + 4x + 3$ and the									
	degree of the polynomial to be added must be less than degree of the polynomial $Q(x)$									
Q.12	Determine <i>a</i> and <i>b</i> for which the following system of linear equations has infinite number of solutions $2x - (a - 4)y = 2b + 1$; $4x - (a - 1)y = 5b - 1$.								r	
Q.13	If $\sqrt{3} \tan \theta = 3 \sin \theta$, then prove that $\sin^2 \theta - \cos^2 \theta = \frac{1}{3}$.									
					OR					
	If $7\sin^2\theta + 3\cos^2\theta = 4$, then prove that $\sec\theta + \csc\theta = 2 + \frac{2}{\sqrt{3}}$									
Q.14	If one solution of the equation $3x^2 = 8x + 2k + 1$ is seven times the other. Find the solutions and the value of k.									
Q.15	A survey conducted on 20 households in a locality by a group of students resulted in the following frequency table for the number of family members in a household.									
		Family size	e :	1 - 3	3 - 5	5 - 7	7 - 9	9 - 11		
		Number of	families	: 7	8	2	2	1		
				•	•	•	•	·		
	Find the mode for the data above .									

Target Mathematics by- Agyat Gupta; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860; 9425772164(P)

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

	formed by there lines and the x-axis.								
Q.21	If $a\sin\theta + b\cos\theta = c$, then prove that $a\cos\theta - b\sin\theta = \sqrt{a^2 - b^2 - c^2}$.								
	OR								
	If x = r sin A cos CA, y = r sin A sin C and z = r.cosA, prove that $r^2 = x^2 + y^2 + z^2$.								
Q.22	Find all the zeros of the polynomial $2x^4 + 7x^3 - 19x^2 - 14x + 30$ if two of its zeros are $\sqrt{2}, -\sqrt{2}$.								
Q.23	In figure 2, $\angle ACB = 90^\circ$ and $CD \perp AB$. Prove that								
Q.24 Q.25 Q.26	$\frac{BC^2}{AC^2} = \frac{BD}{AD}$ Figure 2 Find a quadratic polynomial whose zeroes are $3 + \sqrt{5}$ and $3 - \sqrt{5}$. Show that the square of any positive integer cannot be of the form $5q + 2$ or $5q + 3$ for any integers q. Find the mean of the following frequency distribution using step-deviation method.								
	Classes 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35								
	Frequency 4 5 12 2 2								
0.05									
Q.27	Show that 9^n can't end with 2 for any integer n. OR								
	Prove that product of any three consecutive natural number is divisible by 6.								
Q.28	If $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$, show that $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$.								
	SECTION D								
Q.29	During medical chck up of 35 students of a class, their weights were recorded.								

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

32 Yash scored 40 marks in a test, getting 3 marks for each right answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each incorrect answer, then Yash would have scored 50 marks. How many questions were there in the test ? OR The sum of the digits of a two digit number is 13. The number obtained by interchanging the digits of the given number exceeds that number by 27. Find the number.							
Prove that $(\sin\theta + \cos ec\theta)^2 + (\cos\theta + \sec\theta)^2 = 7 + \tan^2\theta + \cot^2\theta$.							

There is no substitute for hard work

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860;9425772164(P)